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Preface

The field of computational fluid dynamics (CFD) has already had a significant
impact on the science and engineering of fluid dynamics, ranging from a role
in aircraft design to enhancing our understanding of turbulent flows. It is thus
not surprising that there exist several excellent books on the subject. We do
not attempt to duplicate material which is thoroughly covered in these books.
In particular, our book does not describe the most recent developments in
algorithms, nor does it give any instruction with respect to programming.
Neither turbulence modelling nor grid generation are covered. This book is
intended for a reader who seeks a deep understanding of the fundamental
principles which provide the foundation for the algorithms used in CFD. As
a result of this focus, the book is suitable for a first course in CFD, presumably
at the graduate level.

The underlying philosophy is that the theory of linear algebra and the
attendant eigenanalysis of linear systems provide a mathematical framework
to describe and unify most numerical methods in common use for solving
the partial differential equations governing the physics of fluid flow. This
approach originated with the first author during his long and distinguished
career as Chief of the CFD Branch at the NASA Ames Research Center.
He believed that a thorough understanding of sophisticated numerical algo-
rithms should be as natural to a physicist as a thorough understanding of
calculus. The material evolved from the notes for the course Introduction to
Computational Fluid Dynamics taught by the first author at Stanford Uni-
versity from 1970 to 1994. The second author has taught the course since
1994, while the third author has taught a similar course at the University of
Toronto since 1988.

The material is generally suitable for a typical graduate course of roughly
fifteen weeks. It is unlikely that all of the book can be covered in the lectures
and it is left to the instructor to set priorities. One approach which has worked
well is to devote one lecture to each chapter, covering as much material as
possible and leaving the remainder as reading material. The most essential
material is in Chapters 2, 3, 4, 6, 7, and 8. Most of the chapters should
be covered in the sequence used in the book. Exceptions include Chapter 5,
which can be treated later in the course if desired, as well as Chapters 11
through 13, which can be covered anytime after Chapter 8. The mathematics
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background associated with a typical undergraduate degree in engineering
should be sufficient to understand the material.

The second and third authors would like to acknowledge their enormous
debt to Harvard Lomax, both as a mentor and a friend. Sadly, Harvard passed
away in May 1999. We present this book as further evidence of his outstanding
legacy in CFD.

Moffett Field and Toronto, Thomas H. Pulliam
August 2000 David W. Zingg
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1. INTRODUCTION

1.1 Motivation

The material in this book originated from attempts to understand and sys-
temize numerical solution techniques for the partial differential equations
governing the physics of fluid flow. As time went on and these attempts be-
gan to crystallize, underlying constraints on the nature of the material began
to form. The principal such constraint was the demand for unification. Was
there one mathematical structure which could be used to describe the be-
havior and results of most numerical methods in common use in the field of
fluid dynamics? Perhaps the answer is arguable, but the authors believe the
answer is affirmative and present this book as justification for that belief.
The mathematical structure is the theory of linear algebra and the attendant
eigenanalysis of linear systems.

The ultimate goal of the field of computational fluid dynamics (CFD) is
to understand the physical events that occur in the flow of fluids around and
within designated objects. These events are related to the action and inter-
action of phenomena such as dissipation, diffusion, convection, shock waves,
slip surfaces, boundary layers, and turbulence. In the field of aerodynamics,
all of these phenomena, are governed by the compressible Navier-Stokes equa-
tions. Many of the most important aspects of these relations are nonlinear
and, as a consequence, often have no analytic solution. This, of course, mo-
tivates the numerical solution of the associated partial differential equations.
At the same time it would seem to invalidate the use of linear algebra for the
classification of the numerical methods. Experience has shown that such is
not the case.

As we shall see in a later chapter, the use of numerical methods to solve
partial differential equations introduces an approximation that, in effect, can
change the form of the basic partial differential equations themselves. The
new equations, which are the ones actually being solved by the numerical
process, are often referred to as the modified partial differential equations.
Since they are not precisely the same as the original equations, they can, and
probably will, simulate the physical phenomena listed above in ways that
are not exactly the same as an exact solution to the basic partial differential
equation. Mathematically, these differences are usually referred to as trun-
cation errors. However, the theory associated with the numerical analysis of
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fluid mechanics was developed predominantly by scientists deeply interested
in the physics of fluid flow and, as a consequence, these errors are often iden-
tified with a particular physical phenomenon on which they have a strong
effect. Thus methods are said to have a lot of “artificial viscosity” or said
to be highly dispersive. This means that the errors caused by the numerical
approximation result in a modified partial differential equation having addi-
tional terms that can be identified with the physics of dissipation in the first
case and dispersion in the second. There is nothing wrong, of course, with
identifying an error with a physical process, nor with deliberately directing
an error to a specific physical process, as long as the error remains in some
engineering sense “small”. It is safe to say, for example, that most numeri-
cal methods in practical use for solving the nondissipative Euler equations
create a modified partial differential equation that produces some form of
dissipation. However, if used and interpreted properly, these methods give
very useful information.

Regardless of what the numerical errors are called, if their effects are not
thoroughly understood and controlled, they can lead to serious difficulties,
producing answers that represent little, if any, physical reality. This motivates
studying the concepts of stability, convergence, and consistency. On the other
hand, even if the errors are kept small enough that they can be neglected (for
engineering purposes), the resulting simulation can still be of little practical
use if inefficient or inappropriate algorithms are used. This motivates studying
the concepts of stiffness, factorization, and algorithm development in general.
All of these concepts we hope to clarify in this book.

1.2 Background

The field of computational fluid dynamics has a broad range of applicability.
Independent of the specific application under study, the following sequence
of steps generally must be followed in order to obtain a satisfactory solution.

1.2.1 Problem Specification and Geometry Preparation

The first step involves the specification of the problem, including the geom-
etry, flow conditions, and the requirements of the simulation. The geometry
may result from measurements of an existing configuration or may be asso-
ciated with a design study. Alternatively, in a design context, no geometry
need be supplied. Instead, a set of objectives and constraints must be speci-
fied. Flow conditions might include, for example, the Reynolds number and
Mach number for the flow over an airfoil. The requirements of the simula-
tion include issues such as the level of accuracy needed, the turnaround time
required, and the solution parameters of interest. The first two of these re-
quirements are often in conflict and compromise is necessary. As an example
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of solution parameters of interest in computing the flowfield about an airfoil,
one may be interested in i) the lift and pitching moment only, ii) the drag as
well as the lift and pitching moment, or iii) the details of the flow at some
specific location.

1.2.2 Selection of Governing Equations and Boundary Conditions

Once the problem has been specified, an appropriate set of governing equa-
tions and boundary conditions must be selected. It is generally accepted
that the phenomena of importance to the field of continuum fluid dynamics
are governed by the conservation of mass, momentum, and energy. The par-
tial differential equations resulting from these conservation laws are referred
to as the Navier-Stokes equations. However, in the interest of efficiency, it
is always prudent to consider solving simplified forms of the Navier-Stokes
equations when the simplifications retain the physics which are essential to
the goals of the simulation. Possible simplified governing equations include
the potential-flow equations, the Euler equations, and the thin-layer Navier-
Stokes equations. These may be steady or unsteady and compressible or in-
compressible. Boundary types which may be encountered include solid walls,
inflow and outflow boundaries, periodic boundaries, symmetry boundaries,
etc. The boundary conditions which must be specified depend upon the gov-
erning equations. For example, at a solid wall, the Euler equations require
flow tangency to be enforced, while the Navier-Stokes equations require the
no-slip condition. If necessary, physical models must be chosen for processes
which cannot be simulated within the specified constraints. Turbulence is an
example of a physical process which is rarely simulated in a practical context
(at the time of writing) and thus is often modeled. The success of a simulation
depends greatly on the engineering insight involved in selecting the governing
equations and physical models based on the problem specification.

1.2.3 Selection of Gridding Strategy and Numerical Method

Next a numerical method and a strategy for dividing the flow domain into
cells, or elements, must be selected. We concern ourselves here only with nu-
merical methods requiring such a tessellation of the domain, which is known
as a grid, or mesh. Many different gridding strategies exist, including struc-
tured, unstructured, hybrid, composite, and overlapping grids. Furthermore,
the grid can be altered based on the solution in an approach known as
solution-adaptive gridding. The numerical methods generally used in CFD
can be classified as finite-difference, finite-volume, finite-element, or spectral
methods. The choices of a numerical method and a gridding strategy are
strongly interdependent. For example, the use of finite-difference methods is
typically restricted to structured grids. Here again, the success of a simula-
tion can depend on appropriate choices for the problem or class of problems
of interest.
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1.2.4 Assessment and Interpretation of Results

Finally, the results of the simulation must be assessed and interpreted. This
step can require post-processing of the data, for example calculation of forces
and moments, and can be aided by sophisticated flow visualization tools
and error estimation techniques. It is critical that the magnitude of both
numerical and physical-model errors be well understood.

1.3 Overview

It should be clear that successful simulation of fluid flows can involve a wide
range of issues from grid generation to turbulence modelling to the appli-
cability of various simplified forms of the Navier-Stokes equations. Many of
these issues are not addressed in this book. Instead we focus on numerical
methods, with emphasis on finite-difference and finite-volume methods for
the Euler and Navier-Stokes equations. Rather than presenting the details of
the most advanced methods, which are still evolving, we present a foundation
for developing, analyzing, and understanding such methods.

Fortunately, to develop, analyze, and understand most numerical methods
used to find solutions for the complete compressible Navier-Stokes equations,
we can make use of much simpler expressions, the so-called “model” equa-
tions. These model equations isolate certain aspects of the physics contained
in the complete set of equations. Hence their numerical solution can illus-
trate the properties of a given numerical method when applied to a more
complicated system of equations which governs similar physical phenomena.
Although the model equations are extremely simple and easy to solve, they
have been carefully selected to be representative, when used intelligently, of
difficulties and complexities that arise in realistic two- and three-dimensional
fluid flow simulations. We believe that a thorough understanding of what
happens when numerical approximations are applied to the model equations
is a major first step in making confident and competent use of numerical
approximations to the Euler and Navier-Stokes equations. As a word of cau-
tion, however, it should be noted that, although we can learn a great deal
by studying numerical methods as applied to the model equations and can
use that information in the design and application of numerical methods to
practical problems, there are many aspects of practical problems which can
only be understood in the context of the complete physical systems.

1.4 Notation

The notation is generally explained as it is introduced. Bold type is reserved
for real physical vectors, such as velocity. The vector symbol ~ is used for
the vectors (or column matrices) which contain the values of the dependent
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variable at the nodes of a grid. Otherwise, the use of a vector consisting of a
collection of scalars should be apparent from the context and is not identified
by any special notation. For example, the variable v can denote a scalar
Cartesian velocity component in the Euler and Navier-Stokes equations, a
scalar quantity in the linear convection and diffusion equations, and a vector
consisting of a collection of scalars in our presentation of hyperbolic systems.
Some of the abbreviations used throughout the text are listed and defined
below.

PDE Partial differential equation
ODE Ordinary differential equation
OAE Ordinary difference equation
RHS Right-hand side

P.S. Particular solution of an ODE or system of ODE’s
S.S. Fixed (time-invariant) steady-state solution

k-D k-dimensional space

(b-é) Boundary conditions, usually a vector

O(a) A term of order (i.e., proportional to) «

R(2) The real part of a complex number, z






2. CONSERVATION LAWS AND THE
MODEL EQUATIONS

We start out by casting our equations in the most general form, the integral
conservation-law form, which is useful in understanding the concepts involved
in finite-volume schemes. The equations are then recast into divergence form,
which is natural for finite-difference schemes. The Euler and Navier-Stokes
equations are briefly discussed in this chapter. The main focus, though, will
be on representative model equations, in particular, the convection and dif-
fusion equations. These equations contain many of the salient mathematical
and physical features of the full Navier-Stokes equations. The concepts of con-
vection and diffusion are prevalent in our development of numerical methods
for computational fluid dynamics, and the recurring use of these model equa-
tions allows us to develop a consistent framework of analysis for consistency,
accuracy, stability, and convergence. The model equations we study have two
properties in common. They are linear partial differential equations (PDE’s)
with coeflicients that are constant in both space and time, and they represent
phenomena, of importance to the analysis of certain aspects of fluid dynamics
problems.

2.1 Conservation Laws

Conservation laws, such as the Euler and Navier-Stokes equations and our
model equations, can be written in the following integral form:

tg t2
/ Qdv — Qdv + / 7{ n.FdSdt = / Pdvd: (2.1)
V(t2) V(t1) t: JS() t1 JV@©)

In this equation, @} is a vector containing the set of variables which are
conserved, e.g., mass, momentum, and energy, per unit volume. The equation
is a statement of the conservation of these quantities in a finite region of space
with volume V (¢) and surface area S(t) over a finite interval of time t5 — #;.
In two dimensions, the region of space, or cell, is an area A(t) bounded by
a closed contour C(t). The vector n is a unit vector normal to the surface
pointing outward, F is a set of vectors, or tensor, containing the flux of @
per unit area per unit time, and P is the rate of production of () per unit
volume per unit time. If all variables are continuous in time, then Eq. 2.1 can
be rewritten as
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d
il de*f% nIﬂS:i/ Pav 2.2)
dt Jy 5(t) V(t)

Those methods which make various numerical approximations of the integrals
in Egs. 2.1 and 2.2 and find a solution for ) on that basis are referred
to as finite-volume methods. Many of the advanced codes written for CFD
applications are based on the finite-volume concept.

On the other hand, a partial derivative form of a conservation law can also
be derived. The divergence form of Eq. 2.2 is obtained by applying Gauss’s
theorem to the flux integral, leading to

oQ

Sy VE=P (2.3)

where V. is the well-known divergence operator given, in Cartesian coordi-

nates, by 5 5 5

and 1, j, and k are unit vectors in the z, y, and z coordinate directions, respec-
tively. Those methods which make various approximations of the derivatives
in Eq. 2.3 and find a solution for () on that basis are referred to as finite-
difference methods.

2.2 The Navier-Stokes and Euler Equations

The Navier-Stokes equations form a coupled system of nonlinear PDE’s de-
scribing the conservation of mass, momentum and energy for a fluid. For a
Newtonian fluid in one dimension, they can be written as

0Q OFE
— +—=0 2.5
3t | oz (2:5)
with
p pu 0
Q=|pu|, E=|pu2+p| - %ug—; (2.6)
e u(e + p) suudt + k8L

where p is the fluid density, u is the velocity, e is the total energy per unit vol-
ume, p is the pressure, T is the temperature, p is the coefficient of viscosity,
and & is the thermal conductivity. The total energy e includes internal energy
per unit volume pe (where € is the internal energy per unit mass) and kinetic
energy per unit volume pu?/2. These equations must be supplemented by
relations between p and k and the fluid state as well as an equation of state,
such as the ideal gas law. Details can be found in many textbooks. Note that
the convective fluxes lead to first derivatives in space, while the viscous and
heat conduction terms involve second derivatives. This form of the equations
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is called conservation-law or conservative form. Non-conservative forms can
be obtained by expanding derivatives of products using the product rule or
by introducing different dependent variables, such as u and p. Although non-
conservative forms of the equations are analytically the same as the above
form, they can lead to quite different numerical solutions in terms of shock
strength and shock speed, for example. Thus the conservative form is appro-
priate for solving flows with features such as shock waves.

Many flows of engineering interest are steady (time-invariant), or at least
may be treated as such. For such flows, we are often interested in the steady-
state solution of the Navier-Stokes equations, with no interest in the transient
portion of the solution. The steady solution to the one-dimensional Navier-
Stokes equations must satisfy o

Fr 0 (2.7

If we neglect viscosity and heat conduction, the Euler equations are ob-

tained. In two-dimensional Cartesian coordinates, these can be written as

0Q OFE OF
X4 2747 =) 2.8
ot + Ox + Jy (28)
with
@ p pu pv
_ | g2 _|Pru E= pu” +p F= puv 2.9
Q=14 pv |’ puv |’ pv® +p (2.9)
au e u(e + p) v(e +p)

where u and v are the Cartesian velocity components. Later on we will make
use of the following form of the Euler equations as well:
oQ 0Q _

X LAY L BT — 2.1
o e TP 70 (2.10)

The matrices 4 = g—g and B = g—F are known as the flux Jacobians. The

flux vectors given above are written in terms of the primitive variables, p, u,
v, and p. In order to derive the flux Jacobian matrices, we must first write
the flux vectors E and F' in terms of the conservative variables, q1, g2, g3,
and g4, as follows:

_ _ q2
Ey

3-7% _y-lg
B V=Dau+ "¢ - q

E— - . (2.11)
342
Es q1
Ey 3 2
4 ] ~1
i ()
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- g3
F

4342

F2 q1
e 3—yg _y-1
3 (7_1)(]4+ G T T2
| Fa | qugz  y—1 Q§Q3+£
Ta 2 \d 4

%
q1

) |
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(2.12)

We have assumed that the pressure satisfies p = (v — 1)[e — p(u? + v?)/2]
from the ideal gas law, where v is the ratio of specific heats, ¢,/c,. From
this it follows that the flux Jacobian of E can be written in terms of the

conservative variables as

0 1
an (3=
A OE;
EREGION
where _

g2

q—1>3+(
=
2 ()

and in terms of the primitive variables as

3

q

(7—1)[( )

e =(3)
42 = —
g1

as3 = —(7— 1)(

v—1

q2
q1

g2

q1

(

5

)] (2
)]

a
q1

)

)
q

)

(2.13)

(2.14)
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0 1 0 0

azr B—7u(l—yv(y-1)

A= (2.15)
—uv v u 0
| @41 a42 a43 Yu oo
where
-1 3
azn = 1— 2 _ 2

-1
a4z = 7% - 2 (3u? +v?)
as3 = (1 —y)wv (2.16)

Derivation of the two forms of B = 0F/0Q is similar. The eigenvalues of
the flux Jacobian matrices are purely real. This is the defining feature of
hyperbolic systems of PDE’s, which are further discussed in Section 2.5. The
homogeneous property of the Euler equations is discussed in Appendix ??.
The Navier-Stokes equations include both convective and diffusive fluxes.
This motivates the choice of our two scalar model equations associated with
the physics of convection and diffusion. Furthermore, aspects of convective
phenomena, associated with coupled systems of equations such as the Eu-
ler equations are important in developing numerical methods and boundary
conditions. Thus we also study linear hyperbolic systems of PDE’s.

2.3 The Linear Convection Equation

2.3.1 Differential Form

The simplest linear model for convection and wave propagation is the linear
convection equation given by the following PDE:

ou ou

Here u(z,t) is a scalar quantity propagating with speed a, a real constant
which may be positive or negative. The manner in which the boundary con-
ditions are specified separates the following two phenomena for which this
equation is a model:



12 2. CONSERVATION LAWS AND THE MODEL EQUATIONS

(1) In one type, the scalar quantity u is given on one boundary, correspond-
ing to a wave entering the domain through this “inflow” boundary.
No boundary condition is specified at the opposite side, the “outflow”
boundary. This is consistent in terms of the well-posedness of a first-
order PDE. Hence the wave leaves the domain through the outflow
boundary without distortion or reflection. This type of phenomenon
is referred to, simply, as the convection problem. It represents most of
the “usual” situations encountered in convecting systems. Note that
the left-hand boundary is the inflow boundary when a is positive, while
the right-hand boundary is the inflow boundary when a is negative.

(2) In the other type, the flow being simulated is periodic. At any given
time, what enters on one side of the domain must be the same as that
which is leaving on the other. This is referred to as the biconvection
problem. It is the simplest to study and serves to illustrate many of the
basic properties of numerical methods applied to problems involving
convection, without special consideration of boundaries. Hence, we pay
a great deal of attention to it in the initial chapters.

Now let us consider a situation in which the initial condition is given by
u(z,0) = uo(x), and the domain is infinite. It is easy to show by substitution
that the exact solution to the linear convection equation is then

u(z,t) = uo(z — at) (2.18)

The initial waveform propagates unaltered with speed |a| to the right if a
is positive, and to the left if a is negative. With periodic boundary condi-
tions, the waveform travels through one boundary and reappears at the other
boundary, eventually returning to its initial position. In this case, the process
continues forever without any change in the shape of the solution. Preserv-
ing the shape of the initial condition ug(z) can be a difficult challenge for a
numerical method.

2.3.2 Solution in Wave Space

We now examine the biconvection problem in more detail. Let the domain
be given by 0 < x < 27. We restrict our attention to initial conditions in the
form

u(z,0) = f(0)er® (2.19)

where f(0) is a complex constant, and « is the wavenumber. In order to satisfy
the periodic boundary conditions, k¥ must be an integer. It is a measure of the
number of wavelengths within the domain. With such an initial condition,
the solution can be written as

u(z,t) = f(t)e'r® (2.20)
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where the time dependence is contained in the complex function f(t). Sub-
stituting this solution into the linear convection equation, Eq. 2.17, we find
that f(t) satisfies the following ordinary differential equation (ODE)

df .
— == 2.21
L = —ianf (2:21)
which has the solution _
f(t) = f(0)e"ont (2.22)

Substituting f(¢) into Eq. 2.20 gives the following solution
u(z, t) = f(0)e™ 770 = f(0)e(xm 1) (2.23)

where the frequency, w, the wavenumber, k, and the phase speed, a, are
related by
W= kKa (2.24)

The relation between the frequency and the wavenumber is known as the
dispersion relation. The linear relation given by Eq. 2.24 is characteristic of
wave propagation in a nondispersive medium. This means that the phase
speed is the same for all wavenumbers. As we shall see later, most numeri-
cal methods introduce some dispersion; that is, in a simulation, waves with
different wavenumbers travel at different speeds.

An arbitrary initial waveform can be produced by summing initial condi-
tions of the form of Eq. 2.19. For M modes, one obtains

M
w(z,0) =Y fm(0)e (2.25)

m=1
where the wavenumbers are often ordered such that k1 < kg < --- < K.

Since the wave equation is linear, the solution is obtained by summing solu-
tions of the form of Eq. 2.23, giving

M
u(z,t) = Z fim(0)eirm(@=at) (2.26)
m=1

Dispersion and dissipation resulting from a numerical approximation will
cause the shape of the solution to change from that of the original waveform.

2.4 The Diffusion Equation

2.4.1 Differential Form

Diffusive fluxes are associated with molecular motion in a continuum fluid.
A simple linear model equation for a diffusive process is
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Ou 0%u

where v is a positive real constant. For example, with u representing the
temperature, this parabolic PDE governs the diffusion of heat in one dimen-
sion. Boundary conditions can be periodic, Dirichlet (specified «), Neumann
(specified Ou/0x), or mixed Dirichlet/Neumann.

In contrast to the linear convection equation, the diffusion equation has a
nontrivial steady-state solution, which is one that satisfies the governing PDE
with the partial derivative in time equal to zero. In the case of Eq. 2.27, the
steady-state solution must satisfy

8%u

Therefore, u must vary linearly with  at steady state such that the boundary
conditions are satisfied. Other steady-state solutions are obtained if a source
term g(z) is added to Eq. 2.27, as follows:

Ou 0%u
giving a steady state-solution which satisfies
0%u
5.2 9@ =0 (2.30)

In two dimensions, the diffusion equation becomes

ou v 8%u
E =v @ + 6—212 - (m,y) (231)

where g(z,y) is again a source term. The corresponding steady equation is

Pu  0%u

— +t 5 - =0 2.32

5o + s —9@) (2:32)
While Eq. 2.31 is parabolic, Eq. 2.32 is elliptic. The latter is known as the
Poisson equation for nonzero g, and as Laplace’s equation for zero g.

2.4.2 Solution in Wave Space

We now consider a series solution to Eq. 2.27 with Dirichlet boundary
conditions. Let the domain be given by 0 < z < 7 with boundary con-
ditions u(0) = wug, u(wr) = wup. It is clear that the steady-state solution
is given by a linear function which satisfies the boundary conditions, i.e.,
h(z) = uq + (up — ug)z /7. Let the initial condition be
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M
u(z,0) = Z fm (0) sin Ky + h(x) (2.33)

m=1

where k must be an integer in order to satisfy the boundary conditions. A
solution of the form

M
u(z,t) = Z fm () sin &z + h(x) (2.34)

m=1

satisfies the initial and boundary conditions. Substituting this form into Eq.
2.27 gives the following ODE for f,:

dfn o
o - fm Im (2.35)

and we find ,
fm(t) = fm(0)e~Fm"t (2.36)

Substituting f.,,(¢) into equation 2.34, we obtain
M 2
u(z,t) = Z Fm(0)e™Fm t sin gz + h(x) (2.37)
m=1

The steady-state solution (¢ — oo) is simply h(x). Eq. 2.37 shows that high
wavenumber components (large k,,) of the solution decay more rapidly than
low wavenumber components, consistent with the physics of diffusion.

2.5 Linear Hyperbolic Systems

The Euler equations, Eq. 2.8, form a hyperbolic system of partial differen-
tial equations. Other systems of equations governing convection and wave
propagation phenomena, such as the Maxwell equations describing the prop-
agation of electromagnetic waves, are also of hyperbolic type. Many aspects
of numerical methods for such systems can be understood by studying a
one-dimensional constant-coefficient linear system of the form

ou + ou

ot or
where u = u(z,t) is a vector of length m and A is a real m x m matrix. For
conservation laws, this equation can also be written in the form

ou ﬂ_

ot Tor

0 (2.38)

0 (2.39)

where f is the flux vector and A = % is the flux Jacobian matrix. The entries
in the flux Jacobian are
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Ofi
6Uj

Qij = (2.40)
The flux Jacobian for the Euler equations is derived in Section 2.2.
Such a system is hyperbolic if A is diagonalizable with real eigenvalues.!
Thus
A=X"14X (2.41)

where A is a diagonal matrix containing the eigenvalues of A, and X is the
matrix of right eigenvectors. Premultiplying Eq. 2.38 by X ~!, postmultiply-
ing A by the product X X!, and noting that X and X ~! are constants, we
obtain

A
ox—1! 0 | 1
X u XTTAX X u

= 2.42
ot * oz 0 (2.42)

With w = X ~lu, this can be rewritten as

ow ow

— 4+ A—= 2.4

ot + or 0 (2.43)

When written in this manner, the equations have been decoupled into m
scalar equations of the form

Owi Owi
ot * Oz

The elements of w are known as characteristic variables. Each characteristic
variable satisfies the linear convection equation with the speed given by the
corresponding eigenvalue of A.

Based on the above, we see that a hyperbolic system in the form of Eq. 2.38
has a solution given by the superposition of waves which can travel in either
the positive or negative directions and at varying speeds. While the scalar
linear convection equation is clearly an excellent model equation for hyper-
bolic systems, we must ensure that our numerical methods are appropriate
for wave speeds of arbitrary sign and possibly widely varying magnitudes.

The one-dimensional Euler equations can also be diagonalized, leading to
three equations in the form of the linear convection equation, although they
remain nonlinear, of course. The eigenvalues of the flux Jacobian matrix,
or wave speeds, are u,u + ¢, and u — ¢, where u is the local fluid velocity,
and ¢ = y/vp/p is the local speed of sound. The speed u is associated with
convection of the fluid, while u + ¢ and u — ¢ are associated with sound waves.
Therefore, in a supersonic flow, where |u| > ¢, all of the wave speeds have
the same sign. In a subsonic flow, where |u| < ¢, wave speeds of both positive
and negative sign are present, corresponding to the fact that sound waves
can travel upstream in a subsonic flow.

=0 (2.44)

1 See Appendix ?? for a brief review of some basic relations and definitions from
linear algebra.
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The signs of the eigenvalues of the matrix A are also important in deter-
mining suitable boundary conditions. The characteristic variables each satisfy
the linear convection equation with the wave speed given by the correspond-
ing eigenvalue. Therefore, the boundary conditions can be specified accord-
ingly. That is, characteristic variables associated with positive eigenvalues
can be specified at the left boundary, which corresponds to inflow for these
variables. Characteristic variables associated with negative eigenvalues can be
specified at the right boundary, which is the inflow boundary for these vari-
ables. While other boundary condition treatments are possible, they must be
consistent with this approach.

Exercises

2.1 Show that the 1-D Euler equations can be written in terms of the prim-
itive variables R = [p,u,p]T as follows:

8_R+ @—0
ot dx
where
up O
M=|[0up!
Ovp u

Assume an ideal gas, p = (7 — 1)(e — pu?/2).

2.2 Find the eigenvalues and eigenvectors of the matrix M derived in ques-
tion 2.1.

2.3 Derive the flux Jacobian matrix A = 0E/0Q for the 1-D Euler equa-
tions resulting from the conservative variable formulation (Eq. 2.5). Find its
eigenvalues and compare with those obtained in question 2.2.

2.4 Show that the two matrices M and A derived in questions 2.1 and 2.3,
respectively, are related by a similarity transform. (Hint: make use of the
matrix S = 0Q/0R.)

2.5 Write the 2-D diffusion equation, Eq. 2.31, in the form of Eq. 2.2.

2.6 Given the initial condition u(z,0) = sinz defined on 0 < z < 27, write it
in the form of Eq. 2.25, that is, find the necessary values of f,,(0). (Hint: use
M = 2 with k1 =1 and k2 = —1.) Next consider the same initial condition
defined only at z = 27j/4, j = 0,1,2,3. Find the values of f,,(0) required
to reproduce the initial condition at these discrete points using M = 4 with
km =m — 1.
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2.7 Plot the first three basis functions used in constructing the exact solu-
tion to the diffusion equation in Section 2.4.2. Next consider a solution with
boundary conditions u, = uy = 0, and initial conditions from Eq. 2.33 with
fm(0) =1for 1 <m < 3, f,,(0) =0 for m > 3. Plot the initial condition on
the domain 0 < z < #. Plot the solution at ¢ = 1 with v = 1.
2.8 Write the classical wave equation 8%u/0t? = ¢?0%u/dx? as a first-order
system, i.e., in the form
oU oU
AT Db
ot or
where U = [Qu/dx,0u/0t]T. Find the eigenvalues and eigenvectors of A.

0

2.9 The Cauchy-Riemann equations are formed from the coupling of the
steady compressible continuity (conservation of mass) equation
0 0
opu  Opv _
Ox oy
and the vorticity definition
Oov + Ou
or Oy
where w = 0 for irrotational flow. For isentropic and homenthalpic flow, the
system is closed by the relation

1
p:(l—rYT_l(uz-i-UQ—l))v '

Note that the variables have been nondimensionalized. Combining the two
PDE’s, we have

0

where

() 1=(2): (2

One approach to solving these equations is to add a time-dependent term
and find the steady solution of the following equation:

0 0 0
9q  Of 09 _

ot Oz 6y_0

(a) Find the flux Jacobians of f and g with respect to g.

(b) Determine the eigenvalues of the flux Jacobians.

(c) Determine the conditions (in terms of p and u) under which the system
is hyperbolic, i.e., has real eigenvalues.

(d) Are the above fluxes homogeneous? (See Appendix ?7.)



3. FINITE-DIFFERENCE
APPROXIMATIONS

In common with the equations governing unsteady fluid flow, our model equa-
tions contain partial derivatives with respect to both space and time. One
can approximate these simultaneously and then solve the resulting differ-
ence equations. Alternatively, one can approximate the spatial derivatives
first, thereby producing a system of ordinary differential equations. The time
derivatives are approximated next, leading to a time-marching method which
produces a set of difference equations. This is the approach emphasized here.
In this chapter, the concept of finite-difference approximations to partial
derivatives is presented. While these can be applied either to spatial deriva-
tives or time derivatives, our emphasis in this chapter is on spatial deriva-
tives; time derivatives are treated in Chapter ??. Strategies for applying these
finite-difference approximations will be discussed in Chapter ?7?.

All of the material below is presented in a Cartesian system. We em-
phasize the fact that quite general classes of meshes expressed in general
curvilinear coordinates in physical space can be transformed to a uniform
Cartesian mesh with equispaced intervals in a so-called computational space,
as shown in Figure 3.1. The computational space is uniform; all the geometric
variation is absorbed into variable coefficients of the transformed equations.
For this reason, in much of the following accuracy analysis, we use an equi-
spaced Cartesian system without being unduly restrictive or losing practical
application.

3.1 Meshes and Finite-Difference Notation

The simplest mesh involving both time and space is shown in Figure 3.2.
Inspection of this figure permits us to define the terms and notation needed to
describe finite-difference approximations. In general, the dependent variables,
u, for example, are functions of the independent variables ¢, and z,y, 2. For
the first several chapters we consider primarily the 1-D case u = u(z, t). When
only one variable is denoted, dependence on the other is assumed. The mesh
index for z is always j, and that for ¢ is always n. Then on an equispaced
grid

r==z;=jAz (3.1
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OUTER
BOUNDARY

PHYSICAL DOMAIN COMPUTATIONAL DOMAIN

E=Exyt)—n

=nlx,y, )
eyt

WAKE CUT
TEt————| - An=1
BODY SURFACE
y Ag=1
S OUTFLOW W
X ¢| BOUNDARY ki ) )
AT B c D
Fig. 3.1. Physical and computational spaces.
t =t, =nAt=nh (3.2)

where Az is the spacing in z and At the spacing in ¢, as shown in Figure
3.2. Note that h = At throughout. Later k& and [ are used for y and z in a
similar way. When n, j, k,l are used for other purposes (which is sometimes
necessary), local context should make the meaning obvious.

The convention for subscript and superscript indexing is as follows:

u(t + kh) = u([n + klh) = Untr
u(z + mAz) =u([j + m]Az) = ujtm (3.3)
u(z + mAz,t + kh) = uS-T::)

Notice that when used alone, both the time and space indices appear as a
subscript, but when used together, time is always a superscript and is usually
enclosed with parentheses to distinguish it from an exponent.

Derivatives are expressed according to the usual conventions. Thus for
partial derivatives in space or time we use interchangeably

ou du 0%u
6$U/ = %, 6tu = E, Bmu = W’ etc. (34)
For the ordinary time derivative in the study of ODE’s we use
du
=— 3.5
u'= (3-5)

In this text, subscripts on dependent variables are never used to express
derivatives. Thus u, will not be used to represent the first derivative of u
with respect to zx.
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n+1 -+ o o o o o
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n -+ oG+o0 o o o
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n-1 + olo o o o

1
2 j-1 jt1 j+2

Fig. 3.2. Space-time grid arrangement.

The notation for difference approximations follows the same philosophy,
but (with one exception) it is not unique. By this we mean that the symbol
¢ is used to represent a difference approximation to a derivative such that,
for example,

0y = 0y, Oz N Opyp (3.6)

but the precise nature (and order) of the approximation is not carried in the
symbol §. Other ways are used to determine its precise meaning. The one
exception is the symbol A, which is defined such that

Aty =tpy1 —tn, Azj =zj41 —xj, Aup =Upp1 — Uy, etc. (3.7)

When there is no subscript on At or Az, the spacing is uniform.

3.2 Space Derivative Approximations

A difference approximation can be generated or evaluated by means of a
simple Taylor series expansion. For example, consider u(z,t) with ¢ fixed.
Then, following the notation convention given in Egs. 3.1 to 3.3, z = jAx
and u(z + kAz) = u(jAz + kAz) = uji,. Expanding the latter term about
x gives!

du 1 8%u 1 O™u
J J : J

+.. (3.8)

! We assume that u(z,t) is continuously differentiable.
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Local difference approximations to a given partial derivative can be formed
from linear combinations of u; and w4 for k = £1,42,....
For example, consider the Taylor series expansion for u;41:

B du 1 5 [ 0%u 1 (0™
Ujt+1 —U]+(A.'L')(a—x>1+§(ﬂm) (ﬁ)]++ E(A.’L‘) (ﬁ)]
+ ... (3.9)
Now subtract u; and divide by Az to obtain
i — g (O L (O
v (am)j + 2(A:z:) ((%2 j + (3.10)

Thus the expression (ujy1 —u;)/Az is a reasonable approximation for (%)j
as long as Az is small relative to some pertinent length scale. Next consider
the space difference approximation (ujy1—uj—1)/(2Az). Expand the terms in
the numerator about j and regroup the result to form the following equation

ujpr —uj1 (Ou) 1,0, &u LA &u
24z (Bw)j_6 7)), T 1207 \aws j"‘(?"ll)

When expressed in this manner, it is clear that the discrete terms on the left
side of the equation represent a first derivative with a certain amount of error
which appears on the right side of the equal sign. It is also clear that the error
depends on the grid spacing to a certain order. The error term containing the
grid spacing to the lowest power gives the order of the method. From Eq. 3.10,
we see that the expression (u;41 — u;)/Az is a first-order approximation to
(‘g—;‘)j. Similarly, Eq. 3.11 shows that (uj41 —uj—1)/(2Az) is a second-order
approximation to a first derivative. The latter is referred to as the three-
point centered difference approximation, and one often sees the summary
result presented in the form

Ou\ _ ujp1 —uj 2
(ax)j = ST L 0(40?) (3.12)

3.3 Finite-Difference Operators

3.3.1 Point Difference Operators

Perhaps the most common examples of finite-difference formulas are the
three-point centered-difference approximations for the first and second deriva-
tives:2

2 We will derive the second-derivative operator shortly.
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ou 1
(6_35) = gag Wit — 41) + 0(A2?) (3.13)
J
0%u 1
(a—) = gz (1 = 205 +ujm) + 0(4e) (3.14)

J

These are the basis for point difference operators since they give an approxi-
mation to a derivative at one discrete point in a mesh in terms of surrounding
points. However, neither of these expressions tells us how other points in the
mesh are differenced or how boundary conditions are enforced. Such addi-
tional information requires a more sophisticated formulation.

3.3.2 Matrix Difference Operators

Consider the relation

(5w$u)J (uj+1 - 2Uj + Ujfl) (315)

- Ag?
which is a point difference approximation to a second derivative. Now let us
derive a matriz operator representation for the same approximation. Consider
the four-point mesh with boundary points at a and b shown below. Notice
that when we speak of “the number of points in a mesh” , we mean the number
of interior points excluding the boundaries.

a
z= 0 — — — -
j= 1 - - M

Four point mesh. Az =7/(M + 1)

Now impose Dirichlet boundary conditions, u(0) = ug, u(m) = up and use
the centered difference approximation given by Eq. 3.15 at every point in the
mesh. We arrive at the four equations:

1
(6z2u); = A—xz(ua — 2u1 + u2)
1
(6zzu)y = A—mz(ul — 2us + u3)
1
(6zzu)3 = m(% — 2u3z + uy4)
(6mwu)4 = A—Z_Q(Ui& — 2uq4 + ub) (316)

Writing these equations in the more suggestive form
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Uy —2us g (3.17)

(Ozau); = ( )
(0z2u)y = ( uy —2us  +us )/Aa:
(Ozau); = ( )
(Ozau)y = ( us —2ug +up ) /Aw
it is clear that we can express them in a vector-matrix form, and further,
that the resulting matrix has a very special form. Introducing

(751 Uq
L |ue -\ _ 1 0
=1 (bc) 22 | 0 (3.18)
Ug Up
and
-2 1
1 1-2 1
1-2
we can rewrite Eq. 3.17 as
Spoti = A+ (b*c) (3.20)

This example illustrates a matrix difference operator. Each line of a matrix
difference operator is based on a point difference operator, but the point
operators used from line to line are not necessarily the same. For example,
boundary conditions may dictate that the lines at or near the bottom or top of
the matrix be modified. In the extreme case of the matrix difference operator
representing a spectral method, none of the lines is the same. The matrix
operators representing the three-point central-difference approximations for
a first and second derivative with Dirichlet boundary conditions on a four-
point mesh are

0 1 -2 1
1 |-1 0 1 1 1-2 1
0 2Ax -1 01]|" Oaz A2 1-2 1 (3:21)
-10 1-2

As a further example, replace the fourth line in Eq. 3.16 by the following
point operator for a Neumann boundary condition (See Section 3.6.):

2 1 (0Ou 2 1

where the boundary condition is

(%)z:,r _ (%)b (3.23)
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Then the matrix operator for a three-point central-differencing scheme at
interior points and a second-order approximation for a Neumann condition
on the right is given by

-2 1
1 1-2 1
Oga = a7 1 -2 1 (3.24)
2/3 —2/3

Each of these matrix difference operators is a square matrix with elements
that are all zeros except for those along bands which are clustered around
the central diagonal. We call such a matrix a banded matriz and introduce
the notation

be
ab c
B(M :a,b,c) = (3.25)
a be

abM

where the matrix dimensions are M x M. Use of M in the argument is
optional, and the illustration is given for a simple tridiagonal matrix although
any number of bands is a possibility. A tridiagonal matrix without constants
along the bands can be expressed as B(a, b, ¢). The arguments for a banded
matrix are always odd in number, and the central one always refers to the
central diagonal.

We can now generalize our previous examples. Defining @ as®

U1
U2

7= | us (3.26)

Um

we can approximate the second derivative of @ by

.1 v/
bostl = 75 B, -2, 1)ii + (bc) (3.27)

where (b_é) stands for the vector holding the Dirichlet boundary conditions
on the left and right sides:

(b-é) = %[ua,o, e, 0, up]T (3.28)

3 Note that # is a function of time only, since each element corresponds to one
specific spatial location.
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If we prescribe Neumann boundary conditions on the right side, as in Eq.
3.24, we find

D
Opatt = A—:I:ZB(G’ b,)u+ (bc) (3.29)
where
a =[,1,---,2/37
g = [_27_27_27"'7_2/3]T

- 1 2Ax (Ou r
(%) = g |00 5 (5),

Notice that the matrix operators given by Eqs. 3.27 and 3.29 carry more
information than the point operator given by Eq. 3.15. In Eqgs. 3.27 and 3.29,
the boundary conditions have been uniquely specified and it is clear that the
same point operator has been applied at every point in the field except at
the boundaries. The ability to specify in the matrix derivative operator the
exact nature of the approximation at the various points in the field including
the boundaries permits the use of quite general constructions which will be
useful later in considerations of stability.

Since we make considerable use of both matrix and point operators, it is
important to establish a relation between them. A point operator is generally
written for some derivative at the reference point j in terms of neighboring
values of the function. For example

(ézu)j = auj—2 +aiu;—1 + b’LLj + C1Ujt1 (3.30)

might be the point operator for a first derivative. The corresponding matrix
operator has for its arguments the coefficients giving the weights to the values
of the function at the various locations. A j-shift in the point operator corre-
sponds to a diagonal shift in the matrix operator. Thus the matrix equivalent
of Eq. 3.30 is

6wﬁ: B(ag,al,b,cl,O)ﬁ (331)

Note the addition of a zero in the fifth element which makes it clear that b
is the coefficient of u;.

3.3.3 Periodic Matrices

The above illustrated cases in which the boundary conditions are fixed. If the
boundary conditions are periodic, the form of the matrix operator changes.
Consider the eight-point periodic mesh shown below. This can either be pre-
sented on a linear mesh with repeated entries, or more suggestively on a
circular mesh as in Figure 3.3. When the mesh is laid out on the perimeter of
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1

5

Fig. 3.3. Eight points on a circular mesh.

a circle, it does not matter where the numbering starts, as long as it “ends”
at the point just preceding its starting location.

7T 8 1 2 3 4 5 6 7 8 1 2
x= — — 0 - — — — — — - 27 -
j= o1 - - - .« < . M

Eight points on a linear periodic mesh. Az = 27 /M

The matrix that represents differencing schemes for scalar equations on a
periodic mesh is referred to as a periodic matrix. A typical periodic tridiagonal
matrix operator with nonuniform entries is given for a 6-point mesh by

b1 C2 Qg
ai bz c3
a2 b3 C4
as b4 Cs
as bs cg
C1 as be

(3.32)

3.3.4 Circulant Matrices

In general, as shown in the example, the elements along the diagonals of
a periodic matrix are not constant. However, a special subset of a periodic
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matrix is the circulant matrix, formed when the elements along the various
bands are constant. Circulant matrices play a vital role in our analysis. We
will have much more to say about them later. The most general circulant
matrix of order 4 is

bo b1 by bs
bs by b1 b
by b by by
b1 by b3 bo

(3.33)

Notice that each row of a circulant matrix is shifted (see Figure 3.3) one
element to the right of the one above it. The special case of a tridiagonal
circulant matrix is given by

bc a 1
ab c
B,(M :a,b,c) = (3.34)
a bc
c ab M

When the standard three-point central-differencing approximations for a
first and second derivative (see Eq. 3.21) are used with periodic boundary
conditions, they take the form

01 -1
1 |-1 0 1 1
(‘m?—zm« -1 0 1 _zApr(_l’O’l)
1 -1 0
and
-2 1 1
1 1-2 1 1
(Oa0)y = S |_9 1| = 328121 (3.35)
1 1-2

Clearly, these special cases of periodic operators are also circulant operators.
Later on we take advantage of this special property. Notice that there are
no boundary condition vectors since this information is all interior to the
matrices themselves.

3.4 Constructing Differencing Schemes of Any Order

3.4.1 Taylor Tables

The Taylor series expansion of functions about a fixed point provides a means
for constructing finite-difference point operators of any order. A simple and
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straightforward way to carry this out is to construct a “Taylor table,” which
makes extensive use of the expansion given by Eq. 3.8. As an example, con-
sider Table 3.1, which represents a Taylor table for an approximation of a
second derivative using three values of the function centered about the point
at which the derivative is to be evaluated.

The table is constructed so that some of the algebra is simplified. At the
top of the table we see an expression with a question mark. This represents
one of the questions that a study of this table can answer; namely, what is
the local error caused by the use of this approximation? Notice that all of the
terms in the equation appear in a column at the left of the table (although,
in this case, Az? has been multiplied into each term in order to simplify the
terms to be put into the table). Then notice that at the head of each column
there appears the common factor that occurs in the expansion of each term
about the point j, that is,

k
Azk (%) , k=0,1,2,--
57

The columns to the right of the leftmost one, under the headings, make up
the Taylor table. Each entry is the coefficient of the term at the top of the
corresponding column in the Taylor series expansion of the term to the left
of the corresponding row. For example, the last row in the table corresponds
to the Taylor series expansion of —cuj41:

1 ou 1 0%u
J J

e tags (P) o Lag (2
c- (1) GAw 528 ) c- (1) 24A:L' i)

’ (3.36)

A Taylor table is simply a convenient way of forming linear combinations of
Taylor series on a term by term basis.

Consider the sum of each of these columns. To maximize the order of
accuracy of the method, we proceed from left to right and force, by the
proper choice of a, b, and ¢, these sums to be zero. One can easily show that
the sums of the first three columns are zero if we satisfy the equation

-1 -1 -1 a 0
1 0 -1 bl = 0
-1 0 -1 c -2

The solution is given by [a,b,c] = [1,—2,1].
The columns that do not sum to zero constitute the error.

We designate the first non-vanishing sum to be er;, and
refer to it as the Taylor series error.




2
(6 ’LL) 1 (au]'_] +ij+C'LLj+1):?

67) " a2
Az Az? Agz? Azt
u Ou 9%u 8%u 8%u
CE @, @), @),
A2 %u 1
(5),
—a-uj—1  —a —a-(-1)- —% —a-(-1)%- % —a-(-1)3- % —a- (-1)*- 214
—b- Uj —b
—C - Ujq —c  —c-(1)- % —c-(1)2- % —c-(1)®- % —c- (1)* 214

Table 3.1. Taylor tale for centered 3-point Lagrangian approximation to a seconderivative.

0¢
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In this case er; occurs at the fifth column in the table (for this example all
even columns will vanish by symmetry) and one finds

1 [-a -c 0*u —Az? (0*u

= —|—+—|A' | — | =—( — 3.37

e Am2[24 +24] v <3$4>j 12 <3$4)j (3:37)

Note that Az? has been divided through to make the error term consistent.

We have just derived the familiar 3-point central-differencing point operator
for a second derivative

0%u 1

j

The Taylor table for a 3-point backward-differencing operator representing

a first derivative is shown in Table 3.2. This time the first three columns sum
to zero if

-1 -1 -1 as 0
2 1 0 a | =] —1
-4 -1 0 b 0

which gives [az,a1,b] = %[1, —4,3]. In this case the fourth column provides
the leading truncation error term:

1 [8ay | 5 (O%u _Aa:2 d%u
ert—Am[ 6 + 6]Aw ((%3 j— 5 \ae7), (3.39)

Thus we have derived a second-order backward-difference approximation of
a first derivative:

ou 1
(%)J - E(uj*2 - 4Uj—1 + 3U]) = O(A.Z'?) (340)

3.4.2 Generalization of Difference Formulas

In general, a difference approximation to the mth derivative at grid point j
can be cast in terms of ¢ + p + 1 neighboring points as

m q
(%) - Z QiUj4i = €Ty (3.41)
]' .

1=—p

where the a; are coefficients to be determined through the use of Taylor
tables to produce approximations of a given order. Clearly this process can
be used to find forward, backward, skewed, or central point operators of any
order for any derivative. It could be computer automated and extended to
higher dimensions. More important, however, is the fact that it can be further
generalized. In order to do this, let us approach the subject in a slightly
different way, that is from the point of view of interpolation formulas. These
formulas are discussed in many texts on numerical analysis.



Uj
du
Az - (53);
—az - uj—2 —a2
—a1 - uj—1 —a
—b . Uj —b

Table 3.2. Taylor talle for backward 3-point Lagrangian approximation to a first derivative.
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3.4.3 Lagrange and Hermite Interpolation Polynomials

The Lagrangian interpolation polynomial is given by

K
x) = Z ar(T)u (3.42)
k=0

where ay (z) are polynomials in z of degree K. The construction of the ax(x)
can be taken from the simple Lagrangian formula for quadratic interpolation
(or extrapolation) with non-equispaced points

(1 — z)(z2 — 2) ‘o (o — z)(z2 — T)

)(

(1 — 20) (w2 — o) (wo — z1) (w2 — 21)
)(
)t

u(z) = ug

(o — x)(z1 — x)

+ us9
(To — z2)(z1 — 22)

(3.43)

Notice that the coefficient of each uy is one when x = xj, and zero when z
takes any other discrete value in the set. If we take the first or second deriva-
tive of u(z), impose an equispaced mesh, and evaluate these derivatives at
the appropriate discrete point, we rederive the finite-difference approxima-
tions just presented. Finite-difference schemes that can be derived from Eq.
3.42 are referred to as Lagrangian approximations.

A generalization of the Lagrangian approach is brought about by using
Hermitian interpolation. To construct a polynomial for u(z), Hermite formu-
las use values of the function and its derivative(s) at given points in space.
Our illustration is for the case in which discrete values of the function and
its first derivative are used, producing the expression

x) = Zak(:c)uk + Zbk(w) (%) . (3.44)

Obviously higher-order derivatives could be included as the problems dictate.
A complete discussion of these polynomials can be found in many references
on numerical methods, but here we need only the concept.

The previous examples of a Taylor table constructed explicit point dif-
ference operators from Lagrangian interpolation formulas. Consider next the
Taylor table for an implicit space differencing scheme for a first derivative
arising from the use of an Hermite interpolation formula. A generalization of
Eq. 3.41 can include derivatives at neighboring points, i.e.,

q
Z bi (63:’”) - Z AiUjy; = €Ty (3.45)
i=—r Jt+i i=—p

analogous to Eq. 3.44. An example formula is illustrated at the top of Table
3.3. Here not only is the derivative at point j represented, but also included
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are derivatives at points j — 1 and j + 1, which also must be expanded using
Taylor series about point j. This requires the following generalization of the
Taylor series expansion given in Eq. 3.8:

(%)Hk - { li %(kAa:)”%] (Z—g) },- (3.46)

n=0

The derivative terms now have coefficients (the coefficient on the j point is
taken as one to simplify the algebra) which must be determined using the
Taylor table approach as outlined below.

To maximize the order of accuracy, we must satisfy the relation

-1 -1 -1 0 O a 0
1 0 -1 1 1 b -1

-1 0 -1 -2 2 c| = 0
1 0o -1 3 3 d 0

-1 0 -1 -4 4 e 0

having the solution [a, b, ¢, d, €] = %[—3, 0, 3,1,1]. Under these conditions, the

sixth column sums to
Azt (8%
= Tag (a—> (347

and the method can be expressed as

Ou Ou Ou 3 _ 4
<%>j_1 + 4<%)j + <%>]~+1 - A—x(—ujfl + ujy1) = O(Az®)
(3.48)

This is also referred to as a Padé or compact formula.

3.4.4 Practical Application of Padé Formulas

It is one thing to construct methods using the Hermitian concept and quite
another to implement them in a computer code. In the form of a point op-
erator it is probably not evident at first just how Eq. 3.48 can be applied.
However, the situation is quite easy to comprehend if we express the same
method in the form of a matrix operator. A banded matrix notation for Eq.
3.48 is

1 .1 L
B(1L,4,1)0,4 = = B(=1,0,1)i+ (bc) (3.49)

in which Dirichlet boundary conditions have been imposed.* Mathematically
this is equivalent to

* In this case the vector containing the boundary conditions would include values
of both u and du/0z at both boundaries.
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U (Bz)] (81:2) (8333)]. (39:4)]. ( m5)j
Az -d(82), d d-(-1)-1 d)3 4t d)
as-(39), 1
) j
Ax e(‘g—;ﬁ‘)ﬁ1 e e (1) % e (1)2-% e (1)3-% e-(1)* 217{
—a-uj_q -a -a (—1)-% —a-(-1)? % —a-(-1)® % —a (—1)4-214 —a-(-1)° 1—%—0
—b-uy -b
—C-ujq1 —-c  —c (1)% —c- (1)? % —c- (1)3 % —c-(1)4-2l4 —c-(1)° 1—%—0

Table 3.3. Taylor table for central 3-point Hermitian approximation to a first derivative.
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63:7; = 6[3(17 4, 1)]_1 |:E

B(~1,0,1)a + (b?:)] (3.50)

which can be reexpressed by the “predictor-corrector” sequence

- 1 .
u = EB(—I,O, ].)U + (bc)
5,u = 6[B(1,4,1)]"a (3.51)

With respect to practical implementation, the meaning of the predictor
in this sequence should be clear. It simply says — take the vector array ﬁ,
difference it, add the boundary conditions, and store the result in the inter-
mediate array @. The meaning of the second row is more subtle, since it is
demanding the evaluation of an inverse operator, but it still can be given a
simple interpretation. An inverse matrix operator implies the solution of a
coupled set of linear equations. These operators are very common in finite
difference applications. They appear in the form of banded matrices having
a small bandwidth, in this case a tridiagonal. The evaluation of [B(1,4,1)]”
is found by means of a tridiagonal “solver”, which is simple to code, efficient
to run, and widely used. In general, Hermitian or Padé approximations can
be practical when they can be implemented by the use of efficient banded
solvers.

3.4.5 Other Higher-Order Schemes

Hermitian forms of the second derivative can also be easily derived by means
of a Taylor table. For example

Sots = 12[B(1,10,1)] " {A%QB(L —2,1)a + (bé)] (3.52)

is O(Az*) and makes use of only tridiagonal operations. It should be men-
tioned that the spline approximation is one form of a Padé matrix difference
operator. It is given by

1

Sz0u = 6[B(1,4,1)] " [A .
X

B(1,-2,1)a + (b%)] (3.53)

but its order of accuracy is only O(Az?). How much this reduction in accuracy
is offset by the increased global continuity built into a spline fit is not known.
We note that the spline fit of a first derivative is identical to any of the
expressions in Eqgs. 3.48 to 3.51.

A final word on Hermitian approximations. Clearly they have an advan-
tage over 3-point Lagrangian schemes because of their increased accuracy.
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However, a more subtle point is that they get this increase in accuracy using
information that is still local to the point where the derivatives are being
evaluated. In application, this can be advantageous at boundaries and in the
vicinity of steep gradients. It is obvious, of course, that five-point schemes
using Lagrangian approximations can be derived that have the same order
of accuracy as the methods given in Eqgs. 3.48 and 3.52, but they will have
a wider spread of space indices. In particular, two Lagrangian schemes with
the same order of accuracy are (here we ignore the problem created by the
boundary conditions, although this is one of the principal issues in applying
these schemes):

du 1 .
_ B.(1. — —1Du = 0(Az? .54
6{E 12AZL' P( ’ 870787 )u O( z ) (35 )
du 1 .
Z  — —— _B,(-1,16,-30,16,—1)u = O(Az* _
9~ TgA? (—1,16,—30,16, —1)u = O(Az?) (3.55)

3.5 Fourier Error Analysis

In order to select a finite-difference scheme for a given application one must
be able to assess the accuracy of the candidate schemes. The accuracy of an
operator is often expressed in terms of the order of the leading error term
determined from a Taylor table. While this is a useful measure, it provides a
fairly limited description. Further information about the error behavior of a
finite-difference scheme can be obtained using Fourier error analysis.

3.5.1 Application to a Spatial Operator

An arbitrary periodic function can be decomposed into its Fourier compo-
nents, which are in the form e where  is the wavenumber. It is therefore of
interest to examine how well a given finite-difference operator approximates
derivatives of e¥*?. We will concentrate here on first derivative approxima-
tions, although the analysis is equally applicable to higher derivatives.

The exact first derivative of e™*® is

aeinw
ox

If we apply, for example, a second-order centered difference operator to u; =
e, where z; = jAz, we get

= iKe'r® (3.56)

Ujr1 —Uj—1
(Oa); 2Azx
einAw(j—i—l) _ ez’nA:c(j—l)

2Ax
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(einA:v _ e*iﬂA$)e’ih§$_j
2Az

1 .
= 54z [(cos kAz + isin kAz) — (cos KAz — isin kAx)]e* ™
EY) Meinmj
Az
= ik el i 57

where k* is the modified wavenumber. The modified wavenumber is so named
because it appears where the wavenumber, k, appears in the exact expression.
Thus the degree to which the modified wavenumber approximates the actual
wavenumber is a measure of the accuracy of the approximation.

For the second-order centered difference operator the modified wavenum-
ber is given by

sin k Az
=" 3.58

Ax ( )

Note that k* approximates x to second-order accuracy, as is to be expected,
since

*

sin kAx K3 Ax?

Az T 6
Equation 3.58 is plotted in Figure 3.4, along with similar relations for the
standard fourth-order centered difference scheme and the fourth-order Padé
scheme. The expression for the modified wavenumber provides the accuracy
with which a given wavenumber component of the solution is resolved for the
entire wavenumber range available in a mesh of a given size, 0 < KAz < 7.
In general, finite-difference operators can be written in the form

(02); = (02); + (82);

where (§2); is an antisymmetric operator and (62); is a symmetric operator.®
If we restrict our interest to schemes extending from j — 3 to j + 3, then

(6qu); = A_x[al(uj+1 —uj1) +as(ujr2 —uj2) +az(ujs — uj—3)]

1
(03u)j = 5 [douj +di(ujer +ujo1) +do(ujpn +uj2) +da(ujis + ujs)]

The corresponding modified wavenumber is

1
iKY = Az [do + 2(dy cos KAz + dy cos 26 Az + d3 cos 3kA)

+ 2i(ay sin KAz + as sin 26 Az + a3 sin 3sAx)] (3.59)

5 In terms of a circulant matrix operator A, the antisymmetric part is obtained
from (A — AT)/2 and the symmetric part from (4 4+ AT)/2.
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Fig. 3.4. Modified wavenumber for various schemes.

When the finite-difference operator is antisymmetric (centered), the modified
wavenumber is purely real. When the operator includes a symmetric compo-
nent, the modified wavenumber is complex, with the imaginary component
being entirely error. The fourth-order Padé scheme is given by

3
(0ot)j—1 +4(0o1)j + (dott)j1 = S (Uj41 = uj-1)

The modified wavenumber for this scheme satisfies®

. . 3 . .
Z'KZ*C_MAE 4 dik* + ilﬁ:*CMAz — _(emAw _ efmAz)
Az
which gives
. 3isink Az
1K =
(2 + cos kAz) Ax

The modified wavenumber provides a useful tool for assessing difference
approximations. In the context of the linear convection equation, the errors
can be given a physical interpretation. Consider once again the linear con-
vection equation in the form

ou ou_
ot a@m_

6 Note that terms such as (§,u);—1 are handled by letting (J,u); = ik*e*74® and
evaluating the shift in j.

0
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on a domain extending from —oo to oo. Recall from Section 2.3.2 that a
solution initiated by a harmonic function with wavenumber & is

u(z,t) = f(t)e™® (3.60)
where f(t) satisfies the ODE
df

i —iakf

Solving for f(t) and substituting into Eq. 3.60 gives the exact solution as
u(a,t) = f(0)eie

If second-order centered differences are applied to the spatial term, the
following ODE is obtained for f(t):
df ) [sin KAz
= —ia

P Y ] J =it (300

Solving this ODE exactly (since we are considering the error from the spatial
approximation only) and substituting into Eq. 3.60, we obtain

unumerical(xat) = f(o)em(zia*t) (362)

where a* is the numerical (or modified) phase speed, which is related to the
modified wavenumber by

a* K"
a K
For the above example,
a*  sinkAz
a KAz

The numerical phase speed is the speed at which a harmonic function is
propagated numerically. Since a*/a < 1 for this example, the numerical so-
lution propagates too slowly. Since a* is a function of the wavenumber, the
numerical approximation introduces dispersion, although the original PDE is
nondispersive. As a result, a waveform consisting of many different wavenum-
ber components eventually loses its original form.

Figure 3.5 shows the numerical phase speed for the schemes considered
previously. The number of points per wavelength (PPW) by which a given
wave is resolved is given by 27/kAz. The resolving efficiency of a scheme
can be expressed in terms of the PPW required to produce errors below
a specified level. For example, the second-order centered difference scheme
requires 80 PPW to produce an error in phase speed of less than 0.1 percent.
The 5-point fourth-order centered scheme and the fourth-order Padé scheme
require 15 and 10 PPW , respectively, to achieve the same error level.
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Fig. 3.5. Numerical phase speed for various schemes.

For our example using second-order centered differences, the modified
wavenumber is purely real, but in the general case it can include an imagi-
nary component as well, as shown in Eq. 3.59. In that case, the error in the
phase speed is determined from the real part of the modified wavenumber,
while the imaginary part leads to an error in the amplitude of the solution,
as can be seen by inspecting Eq. 3.61. Thus the antisymmetric portion of the
spatial difference operator determines the error in speed and the symmetric
portion the error in amplitude. This will be further discussed in Section 77.

3.6 Difference Operators at Boundaries

As discussed in Section 3.3.2, a matrix difference operator incorporates both
the difference approximation in the interior of the domain and that at the
boundaries. In this section, we consider the boundary operators needed for
our model equations for convection and diffusion. In the case of periodic
boundary conditions, no special boundary operators are required.

3.6.1 The Linear Convection Equation

Referring to Section 2.3, the boundary conditions for the linear convection
equation can be either periodic or of inflow-outflow type. In the latter case,
a Dirichlet boundary condition is given at the inflow boundary, while no
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condition is specified at the outflow boundary. Here we assume that the wave
speed a is positive; thus the left-hand boundary is the inflow boundary, and
the right-hand boundary is the outflow boundary. The vector of unknowns is

@ = [uy, ugy .., up]’ (3.63)

and wug is specified.

Consider first the inflow boundary. It is clear that as long as the interior
difference approximation does not extend beyond u;_1, then no special treat-
ment is required for this boundary. For example, with second-order centered
differences we obtain

8, = AT+ (ch) (3.64)
with
0 1 —Uo
1 |-1 01 . 1 0
A= _— _ = .
Az 10 1} (bc) 5Az | O (3.65)

However, if we use the fourth-order interior operator given in Eq. 3.54, then
the approximation at j = 1 requires a value of u;_», which is outside the
domain. Hence, a different operator is required at j = 1 which extends only to
j—1, while having the appropriate order of accuracy. Such an operator, known
as a numerical boundary scheme, can have an order of accuracy which is one
order lower than that of the interior scheme, and the global accuracy will
equal that of the interior scheme.” For example, with fourth-order centered
differences, we can use the following third-order operator at j = 1:

1
(0zu), = @(—Quo — 3uy + 6uz — u3) (3.66)

which is easily derived using a Taylor table. The resulting difference operator
has the form of Eq. 3.64 with

—6 12 -2 —4ug
1 -8 0 &-1 o 1 U
A= = :
124z | 178 0 8-1p> (%) 4s | 0 | 60

This approximation is globally fourth-order accurate.
At the outflow boundary, no boundary condition is specified. We must
approximate du/0z at node M with no information about ups41. Thus the

" Proof of this theorem is beyond the scope of this book; the interested reader
should consult the literature for further details.
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second-order centered-difference operator, which requires u;i1, cannot be
used at j = M. A backward-difference formula must be used. With a second-
order interior operator, the following first-order backward formula can be
used:

1
(0zw) 5y = A_w(uM —Upr—1) (3.68)
This produces a difference operator with
[0 1 | _
-1 01 0

1 -10 1 . 1 0
A=+ () =5 S| 6o

-1 01 A

L -2 2| 0

In the case of a fourth-order centered interior operator the last two rows of
A require modification.

Another approach to the development of boundary schemes is in terms of
space extrapolation. The following formula allows uar41 to be extrapolated
from the interior data to arbitrary order on an equispaced grid:

(1—-EYHPupy1 =0 (3.70)

where E is the shift operator defined by Fu; = u;y1, and the order of the
approximation is p — 1. For example, with p = 2 we obtain

(1 —2E1 + E72)'U,M+1 =Upm+1 —2upy +up—1 =0 (3.71)
which gives the following first-order approximation to uar41:
UM+1 = 2UM — Upr—1 (3.72)

Substituting this into the second-order centered-difference operator applied
at node M gives

1 1
(5zu)M = E(UM-H - UM—1) = E(QUM —UM—-1 — UM—l)
1

which is identical to Eq. 3.68.

3.6.2 The Diffusion Equation

In solving the diffusion equation, we must consider Dirichlet and Neumann
boundary conditions. The treatment of a Dirichlet boundary condition pro-
ceeds along the same lines as the inflow boundary for the convection equation
discussed above. With the second-order centered interior operator
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(ému)j = (’LL]'+1 - 2’LL]' + u];l) (3.74)

1
Ax?
no modifications are required near boundaries, leading to the matrix differ-
ence operator given in Eq. 3.27.

For a Neumann boundary condition, we assume that Ou/0x is specified at

j=M+1, that is
(%) - (@) (3.75)
9% ) prya 9z /,

Thus we design an operator at node M which is in the following form:

1 ¢ (Ou
(0z2u) = m(auM_l + bupnr) + iy (%) . (3.76)

where a, b, and c are constants which can easily be determined using a Taylor
table, as shown in Table 3.4.
Solving for a, b, and ¢, we obtain the following first-order operator:

1 2 (0Ou

which produces the matrix difference operator given in Eq. 3.29.

We can also obtain the operator in Eq. 3.77 using the space extrapolation
idea. Consider a second-order backward-difference approximation applied at
node M + 1:

ou 1 ;
(%> a1 24z (unr—1 — dunr + Buari) + O(Az?) (3.78)

Solving for uar4+1 gives

1
UMt =3 l4UM —upm-1+ 24z (g—;)
M+1

Substituting this into the second-order centered difference operator for a
second derivative applied at node M gives

+0(Az?) (3.79)

(0z2w) r = A—$2(UM+1 —2upr +up-1)
1
= ? Supr_1 — 6upr +4upr —upro1 + 24z <@)
3Ax L) M+1
1 2 ou
= ———2upy_1—2 — | = .
3A:172( UM—1 unr) + 3Azx (6:1:)M+1 (3.80)

which is identical to Eq. 3.77.
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Exercises

3.1 Derive a third-order finite-difference approximation to a first derivative
in the form

1
(dou)j = ——(auj—z +buj—1 + cuj + dujy1)
Find the leading error term.
3.2 Derive a finite-difference approximation to a first derivative in the form
1
a(0zu)j—1 + (6gu); = A_x(buj_l +cuj + dujyr)
Find the leading error term.

3.3 Using a 4 (interior) point mesh, write out the 4x4 matrices and the
boundary-condition vector formed by using the scheme derived in question
3.2 when both u and Qu/dz are given at j = 0 and u is given at j = 5.

3.4 Repeat question 3.2 with d = 0.

3.5 Derive a finite-difference approximation to a third derivative in the form

1
(dozau)j = 5 (auj—z +bujy + cuj + dujsr + eujy2)

Find the leading error term.

3.6 Derive a compact (or Padé) finite-difference approximation to a second
derivative in the form

1
d(ému)jfl + ((LWU)] + e(5mu)j+1 = A—xz(auj,l + bu]' + C'LL]'+1)
Find the leading error term.

3.7 Find the modified wavenumber for the operator derived in question 3.1.
Plot the real and imaginary parts of K*Az vs. KAz for 0 < KAz < =
Compare the real part with that obtained from the fourth-order centered
operator (Eq. 3.54).

3.8 Application of the second-derivative operator to the function e?*® gives

2 ,ikT
0%e

2 iKkT
——— = —K"e
Ox?
Application of a difference operator for the second derivative gives
ikjAzy *2 _ikT
(0zz€ ) = —Kk""e

thus defining the modified wavenumber x* for a second derivative approxima-
tion. Find the modified wavenumber for the second-order centered difference
operator for a second derivative, the noncompact fourth-order operator (Eq.
3.55), and the compact fourth-order operator derived in question 3.6. Plot
(k*Ax)? vs. kAx for 0 < kAz < 7.
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3.9 Find the grid-points-per-wavelength (PPW) requirement to achieve a
phase speed error less than 0.1 percent for sixth-order noncompact and com-
pact centered approximations to a first derivative.

3.10 Consider the following one-sided differencing schemes, which are first-,
second-, and third-order, respectively:

(6zu); = (uj —uj-1) [Az

(6zu); = (Buj — duj_1 + uj—2) /(2Az)

(0zuw); = (11u; — 18uj_1 + Yuj_2 — 2u;_3) /(6 Ax)

Find the modified wavenumber for each of these schemes. Plot the real and
imaginary parts of k*Ax vs. kAz for 0 < KAz < 7. Derive the two leading
terms in the truncation error for each scheme.






